J. Fluid Mech. (1993), vol. 254, pp. 251-266 251
Copyright © 1993 Cambridge University Press

On the solution near the critical frequency
for an oscillating and translating body in or
near a free surface

By YUMING LIU AND DICK K. P. YUE

Department of Ocean Engincering, Massachusetts Institute of Technology, Cambridge,
MA 02139, USA

(Received 14 January 1993 and in revised form 10 March 1993)

We consider a floating or submerged body in deep water translating parallel to the
undisturbed free surface with a steady velocity U while undergoing small oscillations
at frequency . It is known that for a single source, the solution becomes singular
at the resonant frequency given by t = Uw/g=1, where g is the gravitational
acceleration. In this paper, we show that for a general body, a finite solution exists
as t — 1 if and only if a certain geometric condition (which depends only on the
frequency @ but not on U) is satisfied. For a submerged body, a necessary and
sufficient condition is that the body must have non-zero volume. For a surface-
piercing body, a sufficient condition is derived which has a geometric interpretation
similar to that of John (1950). As an illustration, we provide an analytic (closed-form)
solution for the case of a submerged circular cylinder oscillating near 7 = ;. Finally,
we identify the underlying difficulties of existing approximate theories and numerical

computations near t = £, and offer a simple remedy for the latter.

1. Introduction

The oscillatory motion of a translating body in the presence of a free surface is a
problem of fundamental theoretical interest. For small motion amplitudes compared
to body dimensions, it is traditional to linearize the problem about that for a steady
flow. Because of its importance to motions and seakeeping of ships (and to offshore
structures operating in currents), this problem has been the subject of a large number
of investigations.

The problem is classically solved by approximating the body by a distribution of
singularities typically taking advantage of the slenderness (or thinness) of the body
(e.g. Hanaoka 1957; Havelock 1958; Newman 1959; Maruo 1967; Ogilvie & Tuck
1969; and Newman 1978, which also contains an extensive review). Satisfactory
predictions can generally be obtained except in the neighbourhood of resonance
given by the frequency (w) and forward speed (U) combination 1 = Uw/g = %,
where g is gravitational acceleration. Despite a substantial body of work for the
general linearized problem, the nature of the solution near this critical frequency for
a realistic body has not been satisfactorily resolved.

For a single source, it is well known that the Green function becomes unbounded
at 1 = 1 (Haskind 1954; Wehausen & Laitone 1960). Physically, this may be
explained in terms of the group velocities (in still water) of certain components of
the accompanying wave which approach U as t — 1 (from below). The associated
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energy can no longer be radiated away, and the amplitudes of these wave components
tend to grow indefinitely. Since the problem for a general body can, in principle,
be represented by an appropriate distribution of such sources, it is widely accepted
that the resulting seakeeping problem must likewise be singular at ¢ = { (e.g. Dagan
& Miloh 1982). This appears also to be confirmed by existing approximate theories
and calculations (e.g. Newman 1959; Wu & Eatock Taylor 1988) suggesting that this
difficulty may be inherent in the linearized problem.

The present work is motivated in a large part by careful numerical calculations
for the case of submerged circular and elliptical cylinders by Grue & Palm (1985)
and Mo & Palm (1987). For the submerged circular cylinder, Grue & Palm (1985)
offered strong numerical evidence that the amplitudes of the resonant upstream and
downstream waves approach the same finite limit as t — 1. They were able to support
this by examining the coefficients of an infinite set of equations which resulted from
Fourier discretizations of the source strengths on the circle. Since their equations are
singular at 7 = j, they considered the problem undetermined at this limiting value.
Similar finite results were obtained for the submerged ellipse near © = ; by Mo &
Palm (1987). From these results, they again reasoned (based on an integral equation
similar to (3.3)), that the amplitudes should be finite as t — ;

In this paper, we offer a formal proof that a finite solution exists at t = § for
a general class of bodies. In particular, a simple necessary and sufficient geometric
condition is found for such finite solutions. This condition depends on and must
be satisfied for all possible values of the frequency w but is not a function of U.
When the body is submerged, the condition is satisfied if and only if the body has
non-zero volume (e.g. a submerged cylinder but not a point source or dipole). For a
body intersecting the free surface, sufficient conditions can be obtained by considering
deviations of the body from a vertically uniform geometry of the same waterplane
and draught. The resulting condition has a similar geometric interpretation to that of
John (1950) in another context (the uniqueness of the solution of the floating body
motion problem without forward speed).

In this paper, we concentrate only on the neighbourhood of 6 = |1 — 41|<l.
The linearized boundary-value problem and the behaviour of the Green function
near t = § are reviewed in §2. We reformulate this problem as source-distribution
boundary-integral equations on the body for both submerged (§3) and surface-
intersecting bodies (§4) and discuss the solutions as ¢ — ;. It is shown that the
solutions are bounded for a general class of geometries satisfying an integral condition
with simple geometric interpretations. As an illustration, we consider in §5 the special
case of a submerged circular cylinder and obtain a closed-form (finite) solution for
motions in the neighbourhood of 7 = }.

For simplicity and to obtain closed-form answers, we present the problem mainly
in two dimensions although similar results and geometric conditions follow directly
for three-dimensional bodies. This is outlined in §6. Finally, in the discussion, §7,
we identify the difficulties inherent in existing approximate theories and in direct
numerical solutions of the integral equations as © — 1. In the latter case, a simple
remedy is provided based on an alternative form of the integral equation valid for
small §°.
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2. The boundary-value problem and Green function

We consider the generalized Kelvin-Neumann problem (Haskind 1946) of a two-
dimensional body translating with constant forward speed U parallel to the undis-
turbed free surface in deep water while at the same time undergoing small oscillatory
motion and/or encountering small-amplitude waves at frequency w. A Cartesian
coordinate system o—xz is chosen fixed to the mean position of the body, with o—x
in the undisturbed free surface, x pointing in the direction of forward speed, and z
positive upwards. The fluid is assumed inviscid and incompressible, and the motion
irrotational. The flow can be described by a velocity potential:

D (x,2,0) = ¢(x,2) + Dx,z,t) = $(x, z) + Re{p(x, z)e""}, (2.1)

where ¢ is the potential due to the steady forward motion of the body, and @ the
unsteady potential associated with the body oscillations and/or incident waves. We
focus on the unsteady potential @ and do not further concern ourselves with ¢ which
is related to the steady wave resistance problem.

The time-independent potential ¢ satisfies Laplace’s equation within the fluid and
vanishes at large depth, V¢ — 0 as z — —oco. For small-amplitude incident waves or
body motions, the linearized free-surface condition is

. 0., op .
(1w—Ua)¢>+gEZ——O on z=0,. 2.2)

The kinematic boundary condition applied at the mean position of the wetted body
surface, Sg, can be written as

% = f(x,z2) on Sg, 2.3

where » = (n,,n;) is the unit normal out of the body. In (2.3), the forcing term
f(x,z) is given in terms of the imposed body oscillations and incident wave as well
as the so-called ‘m-terms’ due to the steady potential ¢ (e.g. Newman 1978). The
boundary-value problem for ¢ is complete with the imposition of an appropriate
radiation condition, in this case a physical requirement that only waves with group
velocity greater than (less than) the forward speed can be present far up (down)
stream of the body.

At this point, we should remark that a general uniqueness theory for the boundary-
value problem with the free-surface condition (2.2) is as yet unavailable. Despite this,
the solution of the present problem has been pursued in a large number of studies (see,
e.g. Newman 1978). For submerged bodies in steady motion, the Kelvin—-Neumann
problem is shown (with some restrictions, see Kochin 1937; Dern 1980) to possess
a unique solution. We are unable to extend this result and simply postulate the
uniqueness of the stated problem at least for the general case when 7 # ;.

We define a Green function, G(x,z;x’,z’), which is harmonic everywhere in the
fluid except at (x/,z’) where it is source like. In addition, G satisfies the linearized
free-surface condition (2.2), the radiation condition, and vanishes at large depth.
Physically, G represents the potential due to a translating point source, velocity U,
with a pulsating strength, frequency w.

The solution for G was obtained by Haskind (1954), which we rewrite as follows:

G(x,z;x,z') = Go + G + G, + G5 + G, (24

where
Go = 3{ln[(x — X’ + (z — 2)’] — In[(x — x)* + (z + )1} , 2.5
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in ; , 1 © 1 _ .
G =—_ ekl [Hi(x—x")+{z+2")] + f em[—l(x—x )+(z+z)] dm , 26
-4t (1—4n)t Jom—k 26)
Gg —_ in ek; [—i(x—x)+(z+2")] __ 1 - fw 1 em[—i()c—)c/)‘i-(z+z’)]drn , (27)
(1 —4n)t (1—40): Jom—k
G, = —in kslt—x)Ha+a] 4 1 ][ "1 M=) He+N gy (2.8)
(1 + 47)? (1447)1 Jo m—ks
in ka[i(x—x")+(z+2")] 1 ® 1 mli(x—x")+(z+2")]
Gy = ——hli—> - : e Ndm 2.9)
(1 +41): (14472 Jom—ks

and Cauchy principal-value integrals are indicated. In the above, we define 1 = Uw/g
and the four wavenumbers are defined by

K K 1
kiy = §%5(1 —2t+ (1 -4 ; kyg = W(l +2t+ (1+47)?) ; (2.10)

where k = 40?/g.

The far-field wave behaviour can be readily seen from (2.10). For t < 1, all four
wavenumbers are real and the k;, ks, and k, waves propagate downstream (behind the
body), while the k, wave appears upstream. For t > 1, k; and kq are still real, whereas
k; and k, become complex. As a result, the k; and k, waves remain downstream,
while the k; and k, waves are evanescent.

Our interest is in the neighbourhood of t = 1, where k; and k, approach a common
value, and G, and G, become singular. Physically, this corresponds to the k; and k,
waves merging into a single wave with group velocity equal to U. For a single source,
the energy of this wave cannot radiate away to infinity resulting in an unbounded
buildup of energy, at least in the context of linearized theory (see Dagan & Miloh
1982). The key finding of this paper is that for an actual physical body, the wave
sources of non-trivial strength may combine in such a way that the total solution
remains finite as © — 1. We prove that this is indeed the case subject to a necessary
and sufficient condition on the geometry of the body.

For convenience, we define 62 = |1 — 41|. For §?<1, we have from (2.10):
ki =«[1 + 0], 6%l (2.11)

In the following, we consider asymptotic expansions valid for xjx — x'|0 = o(1) as
0 — 0. Note the limit of |x| — o0 such that x|x — x'|0 — oo while d<1 requires special
care and is taken up in the Appendix.

From (2.6), (2.7), we write

G +G,= %eﬂ-ﬂ*-ﬁ”(’“’” +G +0(9), <l (2.12)

In (2.12), G’ = O(1) results from the principal-value integrals in (2.6) and (2.7), and is
given by

1 . H r ! © 3 s
ZG' +1 = k[—i(x — X) + (z + 2/)]e* =1 E+)] ][ ;L-e'"l-"x-ﬂﬂm Ndm . (2.13)
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3. Submerged bodies

We construct a solution of the problem in terms of a source distribution (Brard
1972):

(x,z) =/ o(x',2')G(x,z;x,z')ds , (3.1)

Sp
where ¢(x', z') is the source strength distribution on the body. Clearly, (3.1) satisfies all
the conditions of the boundary-value problem except for that on the body. Imposing
the body boundary condition (2.3), we obtain an integral equation for the unknown
source strength o:

no(x, z) +][ a(x/, z) G(x,z,x 2Vds' = f(x,z), (x,z) € S. (3.2)

As with the original boundary-value problem, we assume that a unique solution to
(3.2) exists in general for T # 1. As T — %, the kernel of (3.2) becomes unbounded
everywhere due to the presence of G; and G,. Our interest is in this neighbourhood,
so that for %<1, we substitute the asymptotic behaviour of G; + G, in (2.12) into
(3.2) and rewrite the integral equation as

TEO’(X Z) + (nx + lnz)ex(—ix+z)/ a(x’, Zl)ex(ixl+z/)dsl
Sp
" ][ 0(x',2)G,(x,2;%,2)ds’ = f(x,2) + 0(5) , <1, (33)
Sp

where the principal-value integral involving G = G' + Gy + G; + G, is continuous as

T — L

We now define the Kochin function

a= [ o(x,2)e™ds, (3.4)
Sp
and rewrite (3.3) as
O'(X, Z) = — 2_:5(”3( + inz)ex(—ix+z)
a ;15][ (v, 2)Gulx, 23, 2)ds +f(x 2 1 0), F<l. (35)
Sp

The forcing function f, which is due to the incident and steady Kelvin waves as well
as imposed body motions, is, in general, finite and assumed to be O(1).

To determine the magnitude of «, we substitute ¢ in (3.5) into (3.4), and solve for
«. After using the divergence theorem, we obtain

) 3 - o i 2
_ 6
o= (5+2”d_)[ —/Saa(x,z)P(x,z)ds]+0(5), (3.6)
where the kernel P is given by
P(x,z') = ][ "("‘“’ (G’ + Gy)ds, 3.7
Sp

and the constants # and I are given by

= / f(x, z)e**+7ds, (3.8)
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I'= | (—in, + n,)e*ds. 3.9
Sp
& and P are independent of § and can be at most O(1). In (3.9), I is a function of
the body geometry only for a given frequency x.
Depending on the body geometry, there are now two possibilities. If I” # 0, we
substitute (3.6) back into (3.5) to obtain a new integral equation for o:

na(x, z) — ér/llej—.:_n:}" x{—ix+z) / G'(x', Z’)P (x/, Z’)dsl
Sp
+ ][ o(x,2)G,(x,z;x,2')ds = F(x,z) + 0() , (3.10)
S

where
(nx +in.) i
6/2k+iI”
The kernels in (3.10) are bounded and continuous as 7 — i Thus (3.10) is regular
and, for sufficiently smooth Sp, has a bounded solution ¢ = O(1) except possibly at an
enumerable number of discrete values of x for which the Fredholm determinant van-
ishes (e.g. Ursell 1968; for steady motions and two- and three-dimensional submerged
bodies these are shown to be absent for sufficiently small Froude numbers, Kochin
1937). This is a difficulty associated with the general problem and not specifically
with the limit § — 0. Since our interest is in the latter, we do not consider this
possibility any further. From (3.6), it is also clear that o = O($) for I'# 0.

We remark that for arbitrary geometries, (3.10) can be solved in general by direct
numerical means for the finite solution. The velocity potential is finite as © — i and
is given by

F(x,z) = f(x,2) — F ) =0(1). (3.11)

o(x,2) = Z—EEeKH"“) + / o(x,z)G(x,z;x,2')ds + 0(5), (3.12)
Sp

which is bounded for I+ 0. Note that in view of the approximation in (2.12), (3.12) is
strictly valid for k|x —x'|6 = o(1). The potential in this case is in fact finite everywhere
even for |x| — oo (see Appendix).

If ' =0, then from (3.6), « is at least O(1). It follows from (3.5) that ¢ = O(57")
which becomes unbounded as § — 0.

In summary, then, a finite solution to the problem exists as 7 — % if and only if

I's [ (—in,+n,)e*ds +0, (3.13)
Sp
which is a condition that depends on the geometry Sy and the frequency x = 4w?/g
only. If I = 0 for any frequency «, then a forward speed U? = g/4x can always
be found for which the solution becomes unbounded. Physically, (3.13) represents a
requirement that the resonant wave components must not be orthogonal to the body
boundary condition.
With the use of the divergence theorem, we obtain immediately

=2 / / e>2ds (3.14)
B

where B is the (mean) body section. Since the integrand in (3.14) is positive definite,
I’ #+ 0 if and only if the (submerged) body has non-zero cross-section area. The
known singular solution for a point source turns out to be a special case of I'= 0.
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4. Surface-intersecting bodies

An analogous result can be obtained for the case where the body intersects the
free surface. We assume (locally) vertical intersections, and again write the potential
in terms of a body surface source distribution (e.g. Ursell 1980)

o(x,z2) = / o(x,2)G(x,z;x,2')ds' — a[6_G(x,z;x_,0) + 6,G(x,2;x,,0]], (4.1)
Sg

where a = U?/g, and o, represent the source strengths at the two intersection points,
X =Xy.
For 62«1, we proceed as before and write

YKol 4 n
no(x,z) = — —?ﬁ(nx + in,)e ) ][ o(x,2)Gy(x,z;x,2")ds
Sp

+ alo_Gu(x,2;x_,0) + 6.G,(x,2; x4, 0] + f(x,2) + O(5),  (4.2)
where the Kochin function o« is defined to be
o = / o(x, 2)e"™ds — a[o_e"*- + g e"] . 4.3)
Sp

Again, it is clear from (4.2) that ¢ = O(1) if & < O(5). Otherwise, ¢ becomes

unbounded as t — 1.

Substituting (4.2) into (4.3), we have

! = g T _ ro) oA 2
*T T ramnn X J 00 RNHEI00), @)

where the kernel Q is given by
0(x,2) = ]é G, (x,z;x,2)e"™ ) ds 4.5)
and the constant J# is defined as
H = / alo_G,(x,2;x_,0) + 0.G,(x,z; x;,0)]e"™)ds — najo_e™* + o,e*+]. (4.6)
Sp

&, # and Q are independent of § and can be at most O(1). If '=0, « = O(1) and
6 = 0(07"), and no finite solution exists as T — ;. If I'# 0, o = 0(d) and ¢ = O(1)
and we may substitute (4.4) back into (4.2) to obtain a new integral equation for ¢:

- (nx + inl) K(—ix+z) / o7 ot ’
no(x,z) 5/2x+iFe A o(x,2)Q(x',z')ds

+ ][ o(x,z)G,(x,z;x, 2)ds

Sp

— a[o_Gu(x,2;x_,0) + 0.Ga(x,2; x4,0)] = F(x,2) + H(x,z) + 0(3) , (4.7)
where

H(x,z) = — MM onicixts) o 438)

T 8/2k il

Now, every term in (4.7) is finite as 7 — 1, so that (4.7) is regular and a bounded
solution for ¢ can be obtained, after which the Kochin function o can be determined
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FiGURE 1. Geometric condition for a body intersecting the free surface. (a) B’ < 0;
(b) B’ > 0; (c)—B;, = B; <0.

from (4.4). The problem is thus solved with
P(x,z) = 2—7;“-6"(7““) + | o(x,2)G(x,z;x,2))ds

Sp

—afo_G(x,z;x_,0) + 6.G(x,2;x,,0)] + 0(5) , 4.9

which is finite.
As with the submerged case, the necessary and sufficient condition for a finite
solution is (3.13), i.e. I"# 0. Use of the divergence theorem here yields

I'=2k / / e**dS — L, (4.10)
B

where L = x, — x_ > 0 is the waterline width of the body. Let us divide the mean
body section B into two parts: B = By + B’, where By is the rectangle with width
L and depth D equal to the maximum draught of the body, and B’ the difference
between B and B (see figure 1). The double integral over By can be evaluated
yielding

=2 / / e**dS — Le . (4.11)

If the body B is completely enclosed by Bg, B’ is negative and so also is integral
over B’ in (4.11) negative. Whence I' is negative definite and B < By is a sufficient
condition for (3.13).

If B ¢ By (for example, figure 1b), the integral over B’ may be positive, and a
value of ¥ may exist for which I"= 0. To illustrate this further, consider the case
of a circular cylinder, radius R, which intersects the free surface (for simplicity still
assuming the body to be locally vertical at the intersection points). If the centre of the
cylinder z, is above the free surface, z, > 0, then B < By and I is negative definite.
If the cylinder is completely submerged, z, < —R, then from (3.14), I is positive
definite. For the intermediate case of —1 < z,/R < 0, however, (4.11) shows that I'is
negative for k = 0 but increases monotonically with x and eventually changes sign.
For any z./R € (—1,0), there exists a particular value of the frequency x = x, > 0 for
which I"= 0. It follows that a finite solution does not exist at that frequency and at
a forward speed corresponding to © = ! given by U} = g/4x,. Figure 2 shows a plot
of kR as a function of B = sin"'(—z./R) for this case. Note that x,R ~ —In /8 as
g —0.

The sufficient condition on the geometry, B < By, is similar to that of John (1950)
for the motion of a floating body (without forward speed) which requires that for
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FIGURE 2. Dimensionless frequency xR for I = 0 as a function of the
submergence of a floating circular cylind r.

every point of the mean free surface (in this case x ¢ [x_,x,]), the entire vertical
segment below it must not intersect the mean body. The actual requirement of I"# 0
is, however, more general (less restrictive) and admits, for example, a geometry such
as that depicted in figure 1(c).

5. Application to a submerged circular cylinder

As an illustration, we consider the special case of a translating and oscillating
submerged circular cylinder near © = ;. Grue & Palm (1985) investigated this
problem computationally using a source distribution (cf. (3.2)) represented by Fourier

1

series. They obtained solutions very close to © = ; although the kernel of their

integral equation becomes everywhere singular as 7 —  (cf. (3.3)). In this section, we
obtain the finite solution to this problem in the neighbourhood of 7 = 1 (82<1). In
particular, we provide closed-form asymptotic solutions for the far-field amplitudes
of the k; and k;, waves (which have a common finite value at 7 = %).

A local cylindrical coordinate system (r,8) is placed at the centre of the cylinder,
which is at a depth h below the mean water level. Thus, r* = x? + (z + h)? and 8 is
measured counterclockwise from positive x. The geometry parameter I for a circular
cylinder can be found in closed form

I'=2nRe™™1,(2xR) , (5.1)

in which R is the radius of the cylinder and I; the modified Bessel function of the
first kind.

For a circular cylinder, we can easily prove the following relationship:

][ a(x, z’)?ﬁds’ = / o(x',z')ds . (5.2)
Sp an Sp



260 Y. Liu and D.K.P. Yue

Since no fluid crosses the surface of the rigid body, the net source vanishes. As a
result, there is no G, term in G nor in the kernel P. Given the forcing function F,
the solution to the integral equation (3.10) must, in general, be obtained numerically.
For relatively deep submergence, kh, however, the problem simplifies. In particular,
the amplitudes of the k;, waves can be obtained in closed form and interestingly do
not explicitly depend on the source strength 6.

The Kochin function, a, is calculated from (3.6). Since the kernel P (without Gy)
diminishes with submergence xh like e (cf. (3.7)), the second term in (3.6) can be
neglected for large submergence:

i T

= w(6 + 2ikD)

which is O(e**) since I' = 0(¢~**) from (5.1). To determine the potential, we substitute
G = G'+G;+ G, into (3.12). Since G’ diminishes as e™*" for sources on the cylinder, its

contribution to the x wave is small compared to that due to « which is proportional
to e, The potential field is then given by

(5.3)

2iF ;
— x(—ix+z) 't
o(x,2) FE T + /ss a(x',2')}(G3 + Ga)ds' + 0(9) . (5.4)
From the dynamic free-surface condition, the surface elevation # is given by
1) = o = U2)9(x0). 65)
The wave elevations far upstream and downstream of the body are
n = A, X = +00, (5.6)
n = A7 4 Ase™ 4 Ao X = —00, (5.7
with the wave amplitudes given from (5.4) by
(0 + Uky,)
A, =25 — 12 .
12 Jg(5+i21c1_) +0(), (5.8)
Azs = ¢M o (x,z)e>ds + 0(5) . (5.9

g(l+ 47:)5 Sp

From (5.8), it is clear that A, are independent of the source strength 6. Thus, the
amplitudes of the k; and k, waves are explicit and do not require the solution of the
integral equation (3.10).

In principle, it is necessary to solve the steady problem first to provide for the body
boundary condition f(x,z). Again for relatively deep submergence, we neglect the
free-surface effect and write the potential for steady flow past the circular cylinder as
that around a dipole

- R?
d(x,z) = —Ux (1 + 7) (5.10)
Considering only the radiation problem, f is then given by
0 =¢, (ia) cos 0 + 2%] cos 20) +{, (iw sin @ + % sin 20) , (5.11)

where {, and {, are respectively the amplitudes of the sway and heave motions of the
body.
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FIGURE 3. Amplitudes of the ki (upper branch) and k, (lower branch) waves radiated by the
heave and sway oscillations of a submerged circular cylinder as a function of © = Uw/g.
Asymptotic solution (5.13) (——); direct numerical calculations (Grue & Palm 1985) (- - -).

(F, = U/(gR)4=04, h/R=2).

For the calculation of the coefficient %, we first replace (x,z) by the corresponding
cylindrical coordinates (r, ), and expand the exponential in (3.8) in Taylor series. The
integration over # can be readily carried out yielding

F = nxR*e ™ (w + kU) (=L, +i,) , (5.12)

which is the limiting value for & with §2<1. For somewhat larger &, the accuracy
of (5.12) is improved by simply replacing the wavenumber x with k, , respectively for
A (This is equivalent to factoring out e2* rather than e** in (2.12).) Substituting
& and I into (5.8), we obtain finally

Aip 2mk;,Re ™2 ( 14 (1 —40)}

iCe+0.  —i(1— 40 + 4nkRI 2xR)e 2F,

2
) +0@@), (513)
where F, = U/ (gR)5 is the Froude number.

Equation (5.13) is consistent with the known result for a submerged circular
cylinder that the far-field waves generated by unit sway or heave motion have the
same amplitude but are shifted in phase by 1.

Figure 3 plots (5.13) for A, as a function of t for the parameters /R = 2 and
F, = 0.4. The limiting value of A;,/({. +¢{,) as T — i is 4.018.... These parameter

values for h/R and F, coincide with one of the two cases computed by Grue & Palm

(1985) for which they provide values for 7 very close to ;. For comparison, their

numerical values are reproduced in figure 3. The comparison both in terms of the
magnitudes and asymptotic slopes is quite satisfactory for this moderate submergence.

Finally, we consider the value of A;, at 7 = } as a function of wave frequency xR
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e 4

L+ &

0 1 2 3 4 5

FIGURE 4. Limiting amplitude at 1 = Uw/g = % of the k> waves due to the forced heave and
sway oscillations of a submerged circular cylinder as a function of the dimensionless frequency xR.
(h/R=2).

(= (2F,)™?). Evaluating (5.13) at = i, we obtain

AI,Z _ xRe""
(. +{)  2L(2xR)

Figure 4 shows a plot of this limiting amplitude normalized by e™™. As a check,
at the other value of F, = 1.0 (kR = 0.25) computed by Grue & Palm (1985), the
extrapolated value at t = i from their curves again agrees well with the value of
A2/, + ;) = 0.799... given by (5.14). For low frequency (and large U), (5.14) has
the limit of  as kR — 0 — a surprisingly simple result. For high frequency, kR>1,
the amplitudes vanish exponentially, A;,e~*/(i{, + {;) ~ n¥(kR)ie >R,

(5.14)

6. Generalization to three dimensions

The foregoing analyses and results can be generalized to three dimensions. The key
requirement is the separability of the dependence on x and x’ in the leading-order
term of the Green function for §%<1 (cf. (2.12)) leading to the factoring of the Kochin
functions « and o (cf. (3.5), (4.2)).

The three-dimensional Green function for this problem (e.g. Wehausen & Laitone
1960) can be rewritten for t < 1 as

1 1 2 (¥ do (1 1
G oy Py = = — = = —
B ExyE) =3 ran (1—4rcos9)%A (k—k1 k—kz)h(g’k)dk

2 [" do ® 1 1
- — h(8, k)dk, 6.1
+ T ./.,, (1—4rcos 0)2 A (k—k3 k——k4> (©,k) (6.1)
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in which
rrx =[x =X+ -y +EF2), 6.2)
h(0,k) = k cos[k(y — y') sin §]ekl¢+=)—x—x)cos] (6.3)
_1—=2tcosfF (1 — 41cos )1
kia =K 812 cos2 ' 64)

The wavenumbers k; and k; have solutions of the same form as k; and k,. To satisfy
the radiation condition at infinity, the integration paths for k over the singularities
in (6.1) are defined as k, — ie, ky + i€, k3 — i€, ky — ie as € — 0. After the use
of the Plemelj formula, the k integrals reduce to Cauchy principle-value integrals
plus the contribution from the four singularities at ki, k;, k3 and k;. As 1 — i, the
term (1 — 4t cos§)~% becomes unbounded along 6 = 0. Thus G is dominated by the
integration near 8 = 0, i.e.

2 [ do /1 1
G b ; ,’ ,, ! = = ———_] T >
(.3, 23%,y,2) n/o (1—4‘cc089)7]£(k—k1 k—kz)h(o Rdk
5 / h(8, ki) + h(6, k,)
o (1 —4tcosf):

It can be shown that the double integral in (6.5) remains finite as t — ;. By expanding
cos f in Taylor series about 8 = 0, the single integral can be carried out yielding
finally

G(x,y,2;x,y,2') = i8v/2k In(1 — 47) tele+2)-i= 4 (1) ast— (5)-. (6.6)

dé +0(Q) ast— (3)-. 6.5)

The result is identical for T — (%)+ and can be obtained similarly by considering this
limit for the expression of G for 7 > 1.

We now note that the dependence of G on x, x" in (6.6) is identical to (2.12) for the
two-dimensional case. The analyses in §2, 3 thus follow directly leading to geometric
conditions (3.14) and (4.10) for submerged and surface-intersecting bodies respectively.
The integrands remain identical, but now the integrals are to be performed over the
mean two-dimensional surface of the body. For (4.10), the waterline width L is now
replaced by the waterplane area of the body.

7. Discussion

The present findings can be motivated somewhat by physical arguments. Although
the single source (Green function) becomes unbounded everywhere as t — 1, the
distribution of such sources on the body satisfies a finite forcing. Physically, this
requires that the Kochin function o/, which measures the net contribution of the
sources at a fixed point, remains finite (i.e. « < 0(8)) as &6 — 0. The necessary and
sufficient condition for this to be true for a given body is the geomtric condition
I'# 0, a function of the frequency x but not of U. We reason that I" s 0 is in effect
a requirement that the Green function (in fact just the resonant k,, waves) is not
orthogonal to the boundary condition on the body.

We note that the present problem is a classical one for which a number of
approximate theories (e.g. Havelock 1958; Newman 1959; Dagan & Miloh 1981)
exist, all of which indicate that the solution to the problem is singular as © — 1.
The apparent contradiction with the present finding turns out to be the result of a
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common feature of the existing theories, namely, that the body boundary condition
is enforced only in an approximate manner.

Consider, for example, a submerged circular cylinder represented by a single dipole
Green function G, at the centre. For 7 not near {, the error in the normal velocity on
the body surface is € ~ e 2** which vanishes as the body submergence increases. For
8%<1, however, € ~ 72 /§ since G,, ~ 0(67"), and the approximation is unacceptable
as T — ; for any finite xh. Interestingly, for a point-like body, which may be a valid
approximation for a very deeply submerged object, I = 0 according to (3.14). The
solution at 7 = ; is then in fact unbounded and is consistent with existing results.

It is noteworthy that existing numerical solutions to this problem (e.g. Grue & Palm
1985; Wu & Eatock Taylor 1988) have likewise met with difficulties close to 7 = 1.
The computational difficulty arises from a direct solution of the integral equation
(3:2) as t — ;. From (3.3) and dividing by (n, + in,)e*"**9 /5, we have

. , x(ix—z) -
2mc/ o(x,2)e"™+ds + ° .5 [no'(x, z) + ][ o6(x',2)Gn(x,2; X, z')ds’]
S n, +1n, Sp
=S )+ 06 ()
T +in,” B

In a typical numerical solution, (7.2) is discretized by subdividing Sp into N segments,
and local basis functions are assumed for the source strength ¢ over each segment,
say resulting in N unknown values for ¢. Equation (7.2) is then collocated at N
selected points (say one in each segment) resulting in a system of N linear equations
for the N unknowns. The resulting coefficient matrix may be formally expressed as

([Ad + [A:16) + 087 , (7.2)

where [A,] and [A,] are the N x N influence matrices corresponding to the first and
second terms respectively on the left-hand side of (7.2) and are formally independent
of 8. As t — 1, (7.2) reduces to [A|] + O(5). From (7.2), it is clear that [A,] is
not a function of the field point x. Thus, the coefficient matrix has identical rows
regardless of the position of the collocation points and is singular. The nature of the
computational difficulty in the solution of (7.2) for 62«1 is hence clear.

It is useful to point out that our analysis in §§2, 3 provides a simple remedy for the
computational problem. For t near the critical frequency, the numerical difficulties
are easily avoided by solving the regular equations (3.10) for a submerged body or
(4.7) for a surface-piercing body instead of the singular equation (3.2).

This research is supported by grants from the Office of Naval Research.

Appendix. The velocity potential at large distances

In this appendix, we consider the behaviour of the solution in the limit |x| — oo such
that x|x|é — oo while é<1. For simplicity, we consider the case of a two-dimensional
submerged body.

As |x| — oo, Gy vanishes and the principal-value integrals in (2.6) to (2.9) can be
integrated analytically via contour integration. For x — 400, G, G3, and G, vanish,
while

2n

~ ehel—ix=x)+z+2)] (A1)
(1—47)}

G,
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For x — —oo, G, vanishes, while

iZTC —i(x—. z+2"
G1~(_ft4—r)—§ekl[ (x—x")+(z+ )]’ (A2)
Gay ~ T2 gl (A3)
' (1+ 41)1
Substitution of (A1)-(A3) into (3.1) gives
.2 M ! 7
o(x,z) ~ 1—;6‘“‘"‘“’ / a(x, 2 )ek gy (A9
Sp
for x — 400, and
'2 H s 7’
d(x,z) ~ 1—5’3e"1‘""‘+2> / o(x,2)er ™+ 4y + [ o(x,2)(Gs + Gy)ds’ (A5)
Sp Sp

for x - —oo. In the neighbourhood of §<1, we expand the kernel €420+ in Taylor
series about &, = k:

gl +2) — e+ 1 4 Dpc(ix’ 4 2')6 + 0(8Y)] , 6%l . (A6)
After substituting (A 6) into (A 4) and (A 5), we obtain
P(x,2) ~ 12m(2/8 — y)e > + 0(9) (A7)

for x — +o0, and

d(x,2) ~12n(a/d + y)ef1 i+ 4 / 6 (X, 2')(G3 + Ga)ds' + O(9) (A8)

Sp

for x — —o0. Here, the constant y is given by
y =2k / (ix' + 2')o(x, z)e" ™+ dy | (A9)
Sp

and can formally be at most O(1) for finite 6. For I'# 0, a/3 = O(1) and ¢ = O(1).
Thus the potentials in (A7) and (A 8) are bounded as 6 — 0.

We remark that the k;, potentials in (A 8) and (A7) respectively approach the
same finite limit as 6 — 0. This is due to the fact that y is O(5) which can be shown
starting from just before (2.12). The analysis itself is a detail and is omitted here.
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